Preliminary Results of the Multi-Mode Transportation Test Rail Data Analysis

Elena Kalinina, Catherine Wright, and Natalie Gordon
Sandia National Laboratories

SFWST Annual Working Group Meeting
University of Las Vegas, NV
May 23, 2018
Spent Fuel and Waste Science & Technology

Transportation System Instrumentation

Assemblies & Cask System Instrumented with 40 Accelerometers & 37 Strain Gauges

Data Collection Frequency
TTCI: 10,240 Hz
Rail: 512 Hz
Why TTCI

- Short duration tests with known conditions
- Design parameters somewhat beyond expected on the commercial railroads
 - Track design
 - Speeds
 - Coupling impact velocities

Kasgro 12-Axle Car with Cask at TTCI
Spent Fuel and Waste Science and Technology

Series of Tests Conducted at TTCI

- **Twist & Roll Tests (18 Tests)** Lateral Inputs
 - Determines car’s ability to negotiate oscillatory cross-level perturbations.

- **Pitch & Bounce Tests (9 Tests)** Vertical Inputs
 - Determines car’s ability to negotiate parallel vertical rail perturbations.

- **Dynamic Curving Tests (25 Tests)** Lateral Inputs
 - Determines car’s ability to negotiate curving over jointed track with combination of lateral misalignment at outer rail joints and cross-level due to low joints on staggered rails.

- **Tests at U.S. Army Pueblo Chemical Depot (17 Tests)** Vertical Inputs
 - Determines performance over FRA Class-2 railroad track and tests through No. 8 turnout and No. 8 crossovers.

- **Single Bump Tests (12 Tests)** Vertical Inputs
 - Determines performance at grade crossings.

- **Crossing Diamond Tests (6 Tests)** Vertical Inputs
 - Determines vehicle’s behavior when crossing diamonds (or “frogs’), a leading cause of derailments.

- **Hunting on Railroad Test Track & Transit Test Track (30 Tests)** Lateral Inputs
 - Determines stability at 30, 40, 50-75 mph at 5 mph increments.

- **Coupling Impact Tests (10 Tests)** Longitudinal Inputs
 - Determines longitudinal inputs from coupling at higher than normal speeds.
Spent Fuel and Waste Science and Technology

Data Collected by TTCI

Purpose: to compare railcar performance against AAR requirements

Data Collection Frequency
- Tests with IWS: 1,200Hz
- Tests without IWS (hunting): 600Hz
- Coupling impact tests: 500Hz

Data Filtering
- Acceleration data: 30Hz
- IWS data: 15Hz
Transportation test analyzes unfiltered data.
The filtered data are shown for comparison purpose only.
The filtered data are similar to the TTCI data.
MAJOR GOAL: understand the responses of the transportation system to the different types of the transient inputs – different test conditions and speeds in all 125 test cases to the system elements.

This is important for model validation and for the analysis of the rail data on the route to and from Baltimore.

ANALYSIS OUTPUTS

- Min and max accelerations/strain for each of 40 accelerometers/37 strain gages for each test case.
 - The min/max values are derived from the analysis of the unfiltered time histories corrected for bias. Butterworth’s band filter (0.1Hz-1,000Hz) was in a few cases on the data significant drifts.

- Acceleration and strain Shock Response Spectra (SRS) for different transportation system elements for each test case.
 - The SRS predicts the maximum amplitude at which various single-degree-of-freedom systems would respond to the transient inputs.

- Attenuation and amplification from the transportation platform to the assembly and cask as a function of frequency for each test case.
The elements of the transportation system respond differently to the shocks.

Correlation coefficient between the assembly and cradle acceleration is \(\sim 0.25 \)
• There is noticeable attenuation from the transportation platform to the cask and assembly, except the low frequencies (below 4Hz).

Single Bump Tests at 4 Different Speeds: 40; 55; 60; and 75 mph
SNL Assembly Accelerations in Different TTCI Tests

Maximum Acceleration on SNL Assembly

- Shock from rail coupling is significantly more severe than the other types of shock events.

Mean Maximum Acceleration on SNL Assembly without Coupling

- Single Bump and Pinch and Bounce tests have largest accelerations compared to the other tests, except coupling impact.
Coupling impact results in significantly higher strains compared to the other tests.

Single Bump and Pinch and Bounce have largest strains compared to the other tests, except coupling impact.
There is a clear acceleration-strain correlation.

In all the tests, except coupling impact, the acceleration on the rod is from -1g to 1g and the strain is from 25 to -18 micro strain.
Spent Fuel and Waste Science and Technology

Strain FFTs for SG4-0

Single Bump:
Peaks: 2.5 and 47 Hz

Pitch and Bounce
Peaks: 2.5 and 46 Hz

89 Hz 130 Hz

Date 13
Spent Fuel and Waste Science and Technology

Example of Acceleration Time History
All 3 surrogate assemblies and the cradle have similar accelerations.

The accelerations are the lowest on the cask and highest on the transportation platform.

The vertical acceleration on the platform are significantly higher than the lateral and transverse.

The vertical, lateral, and transverse accelerations are comparable for the cask and cradle.
Spent Fuel and Waste Science and Technology

Single Bump Test Results for Different Speeds

- Accelerations and strains increase with speed

Max Acceleration on Assembly

Transportation Platform Acceleration

SNL Assembly Mean Strain

SNL Assembly Mean Acceleration
Spent Fuel and Waste Science and Technology

Coupling Impact Acceleration Time History Comparison

Impact at 4.1 mph

Impact at 8.0 mph

Transportation Platform max/min acceleration 9.5g/-10.1 g

Legend:
- Transportation Platform (A21Z)
- SNL Assembly (A1Z)
- Cask (A16Z)

Transportation Platform max/min acceleration 26.1g/-25.1 g
Comparison Between B-End Coupling Impact Tests

The coupling at 8mph has significantly larger acceleration than coupling at 2.1-6.8mph.

The accelerations are higher at the front end while coupling is on the back end (B-end).
Comparison Between Micro Strains in Different Coupling Impact Tests

Only one strain gage displayed strain amplitude > 70 micro strain. The maximum measured strain was -99.0 micro strain in 7.5mph test.

60% of strain gages in 4.1-5.7mph tests were in the range from 7 to 13 micro strain.
The measured maximum accelerations follow the same trend as the measured maximum impact force.
Impact at 4.1 mph

Impact at 8.0 mph

Coupling at 8mph results in significant high frequency assembly response.
Strain SRS on SNL Assembly Front in Coupling Impact Tests

Impact at 4.1 mph

Impact at 8.0 mph

Strain response is significantly higher in coupling at 8mph, but the maximum occurs at the assembly resonance frequency ~45Hz.
Spent Fuel and Waste Science and Technology

Lateral (X), Transverse (Y), and Vertical (Z) Accelerations on the Platform

Z acceleration on the platform is higher than X and Y in all tests except coupling.
Lateral (X), Transverse (Y), and Vertical (Z) Accelerations on the Cradle

X and/or Y acceleration on the cradle are higher than Z in Dynamic Curve, Hunting, and PCD tests.
Lateral (X), Transverse (Y), and Vertical (Z) Accelerations on the Cask

X and/or Y acceleration on the cradle are higher than Z in Dynamic Curve, Hunting, PCD, Single Bump, and Twist and Roll tests.
The higher lateral than vertical accelerations on the cradle and cask in Hunting tests result in higher lateral strains on the SNL assembly.
Distance: 162 mi
Travel time: 6.6 hrs
Average speed: 24.8 mph
Platform (A19Z) Time History

- Shock
- Vibration
- Stop
Spent Fuel and Waste Science and Technology

Bump Event on Road Crossing

- Event time: 22,900 sec
- Train speed: 39.8 mph
- Max acceleration: 3.98 g (A19Z)

Event time: 22,900 sec
Train speed: 39.8 mph
Max acceleration: 3.98 g (A19Z)
- Max platform acceleration (A19Z): 3.98 g
- Max assembly acceleration (A5Z): 0.42 g

- Max platform acceleration (A19Z): 4.05 g
- Max filtered platform acceleration (A19Z): 3.71 g
- Max assembly acceleration (A5Z): 0.65 g
- Max filtered assembly acceleration (A5Z): 0.56 g
Track Switch Event Compared to TTCI PCD Test

TTCI PCD Test 53, Track Switch and Rejoin

Track Switch Event on Rail 1
- Event at 11,087 sec with peak acceleration of 2.73 g (A19Z)
- Event at 11,089 sec with peak acceleration of 2.43 g (A19Z)
- Train speed 25.6 mph
Spent Fuel and Waste Science and Technology

Track Switch Event and TTCI PCD Test SRS

Rail 1 Track Switch Event

TTCI PCD Test 53
Spent Fuel and Waste Science and Technology

Accelerations in Coupling Event Compared to TTCI Coupling Impact Test

Rail 1 Coupling Event

A-End Coupling at TTCI, 4.6mph
Spent Fuel and Waste Science and Technology

Strains in Coupling Event Compared to TTCI Coupling Impact Test

rail 1 coupling event

- The coupling shock events with similar acceleration signals have similar strain signals.

A-End Coupling at TTCI at 4.6mph
Summary

- Preliminary analysis of TTCI test data demonstrated:
 - Elements of the transportation system respond differently to the shocks.
 - There is noticeable attenuation from the transportation platform to the cask and assembly, except the low frequencies (below 4Hz).
 - Shocks from the coupling impacts greater than 6mph are significantly more severe than all the other shocks and may result in amplification in the system at higher frequencies.
 - The highest accelerations and strains (except coupling impact) were observed in Single Bump and Pitch and Bounce Tests.
 - Dynamic Curve, Hunting, PCD, Single Bump, and Twist and Roll tests have larger lateral than vertical accelerations on the cask. This results in higher lateral strains on the assembly.
 - Accelerations and strains show good correlation in all tests except coupling impact.
 - Maximum strain in all 125 tests at TTCI was 99 micro strain (coupling at 7.5 mph).

- Preliminary analysis of Rail 1 data demonstrated:
 - The rail events such as road crossing, switching tracks, and coupling are very similar to the corresponding TTCI tests with regard to time histories and SRSs.