Spent Fuel and Waste Science and Technology

WIPP Support and Logistics – Underground Thermal Tests

Doug Weaver
WIPP Underground Test Coordination Manager

SFWST Annual Working Group Meeting
University of Las Vegas
May 23, 2018
WIPP Status

- Waste emplacement resumed last year.
- Mining resumed in January on Panel 8.
- Split Shift 4x10 schedule. Mining on day shift. Waste Emplacement on backshift.
- Supplemental Ventilation System operational. Increase flow to north end and allows for mining, drilling, and bolting.
- SDI research area being opened for ventilation and ground control. Will provide access to freshly mined salt (2011-2012) with minimally developed DRZ and minimal traffic.
Spent Fuel and Waste Science and Technology

WIPP – Location of Field Testing

May 23, 2018

WIPP - Salt Field Tests
Spent Fuel and Waste Science and Technology
WIPP Support to the Field Tests

- **Dedicated Test Coordination and Logistics**
 - Work control and logistics
 - Training
 - Scheduling
 - Underground escort

- **Coreholes and Instrumentation Holes**
 - Cleanout
 - Grouting?
 - Survey
 - Video
 - Sample control and processing

- **Dedicated Utilities to the Test Locations**
 - Electrical
 - Communication
 - Lighting

- **Gas Bottles and Racks**

- **Automated Data Collection and Distribution**

- **Construction and Operational Testing of a Full-Sized Prototype Canister Heater**
 - Potential heat source for the medium scale test described in FCRD-UFD-2015-000077 (section 3.2)
Canister Heater Near the WIPP IAS
Spent Fuel and Waste Science and Technology

WIPP Support – Canister Ops Testing

ROM Salt and Instrumentation on Canister

Data Collection
Spent Fuel and Waste Science and Technology

WIPP Support to the Field Tests

4.8” Dia Coreholes
Spent Fuel and Waste Science and Technology

WIPP Support to the Field Tests

Nitrogen Distribution System

Electrical Distribution System
Spent Fuel and Waste Science and Technology

WIPP – Support to Future Testing

Core Rig and Barrels
Rough Order of Magnitude Cost Estimate:

<table>
<thead>
<tr>
<th>Core Rig</th>
<th>Resource Description</th>
<th>Man-hours</th>
<th>Rate</th>
<th>Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWP</td>
<td>Labor - Mechanics (2 persons)</td>
<td></td>
<td>160</td>
<td>$61.76</td>
</tr>
<tr>
<td></td>
<td>Shift Differential (2.5%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overtime (10%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NWP</td>
<td>Materials - seals, parts</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subtotal: 14,117

<table>
<thead>
<tr>
<th>Core Rig</th>
<th>Resource Description</th>
<th>Man-hours</th>
<th>Rate</th>
<th>Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWP</td>
<td>Materials - Core Barrels and Supplies (five setups)</td>
<td>10,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NWP</td>
<td>Labor - Core Crew (3-person crew, 25-days)</td>
<td></td>
<td>750</td>
<td>$60.01</td>
</tr>
<tr>
<td></td>
<td>Shift Differential (2.5%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overtime (10%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NWP</td>
<td>Labor - Mine Operations (Supervisor)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NWP</td>
<td>Labor - Geotech & Survey</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NWP</td>
<td>Labor - Safety</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subtotal: 108,278

<table>
<thead>
<tr>
<th>Test Support - Electrical, Communications</th>
<th>Resource Description</th>
<th>Man-hours</th>
<th>Rate</th>
<th>Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWP</td>
<td>Labor - Electricians (2 persons)</td>
<td></td>
<td>100</td>
<td>$61.76</td>
</tr>
<tr>
<td>NWP</td>
<td>Materials - boxes, wire</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subtotal: 11,176

<table>
<thead>
<tr>
<th>Assumptions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Assume approximately 5 setups each with one 4.8" core hole (heater hole) and six 2" diameter instrument holes</td>
</tr>
<tr>
<td>2) Heater holes are ~4.8" diameter and 25 feet long. Instrument holes are ~ 2" diameter and 25 feet long</td>
</tr>
<tr>
<td>3) Each heater hole will take 1 day to core and the instrument holes 2 day, with one day to mobe and de-mobe (5 days total).</td>
</tr>
</tbody>
</table>
Underground Thermal Testing Activities

Prototype Canister Heater Operational Testing (AIS)
- 220V/120V Electrical Drop Available (AR 1528471)
- Install Canister Heater (Transport Underground, Instrumentation)
- Testing - Phase I
 - 1100 Watts
 - 500 Watts
 - Mine-Back for Physical Observation
 - Analysis
- Testing - Phase II
 - Planning for Phase II Operational Testing
 - Phase II Installation and Testing

Small-Diameter Borehole Thermal Tests - Prototypes (E140/N1100)
- 120V Electrical Drop Available (AR 1738421)
- Design-Build Packer/Heater System at LANL
- Install and Prototype Testing
 - Isothermal Testing
 - Thermal Testing
 - ERT Testing
 - Feedback to Final Design
 - Phase II Prototype Testing

Small-Diameter Borehole Thermal Tests (SDI Area)
- Final Test Design
- Build Packer/Heater Systems
- Instrumentation Ready for Field Install
- SDI Area Available (Ventilation, Ground Control)
- Core Test Arrays
- Infrastructure - Electrical, Lighting, Communications
- Implementation of Small-Diameter Borehole Thermal Test and Analysis

May 23, 2018 WIPP - Salt Field Tests