Recent Aeroelastic Enhancements in OpenFAST

Jason Jonkman, Ph.D. – NREL

2018 Sandia Blade Workshop
August 28-29, 2018
Lubbock, Texas
The OpenFAST Multiphysics Engineering Tool

- **OpenFAST** is DOE/NREL’s premier open-source wind turbine multi-physics engineering tool.
- **FAST** underwent a major restructuring, w/ a new modularization framework (v8).
- Not only is the framework supporting expanded functionality, but it is facilitating establishment of an open-source code-development community for multi-physics engineering models (OpenFAST).
Timeline of Recent Aeroelastic Enhancements

- **2012**
 - Original BeamDyn development

- **2013**
 - First release of FAST v8

- **2014**
 - Validation against Siemens data

- **2015**
 - AeroDyn overhaul

- **2016**
 - Begin collaboration w/ Envision Energy

- **2017**
 - Last release of FAST v8

- **2018**
 - First release of OpenFAST

- **2019**
Outline

• The OpenFAST Multiphysics Engineering Tool
• Timeline of Recent Aeroelastic Enhancements
• **Overview of BeamDyn & AeroDyn**
• Siemens Verification & Validation Collaboration
• NREL-Envision Collaboration
• Outlook
ElastoDyn Versus BeamDyn

- Previous beam model in FAST (v7 & ElastoDyn module of v8):
 - Euler-Bernoulli beam
 - Straight & isotropic
 - Bending only
 - Assumed-mode method
 - Some geometric nonlinearity

- New BeamDyn module:
 - Geometrically exact beam theory (GEBT)
 - Legendre spectral finite element (LSFE)
 - Both statics & dynamics
 - Time integration via generalized-α
BeamDyn Overview

- Full 6×6 cross-sectional mass & stiffness
 - Stiffness-proportional damping
- Curved/swept reference axis (spline based)
- Nonlinear geometrically exact large deflection
- Analyze blade w/ single LSFE
- Both Gauss & Trapezoidal-Rule spatial integration

BeamDyn Analysis of NREL 5-MW Blade w/ 49 Cross-Sectional Stations
AeroDyn Overview

• Actuator-line physics:
 o Static (BEM) or dynamic wake (DBEMT)
 o Static or unsteady airfoil aerodynamics (UA) (Beddoes-Leishman)
 o Tower drag & influence on wind

• Recent overhaul (v15)
 o Fixed underlying problems w/ original theoretical treatments
 o Introduced improved skewed-wake, dynamic wake, & UA
 o Enabled modeling of highly flexible & curved/swept blades
 o Supported features of FAST modularization framework
Outline

• The OpenFAST Multiphysics Engineering Tool
• Timeline of Recent Aeroelastic Enhancements
• Overview of BeamDyn & AeroDyn
• Siemens Verification & Validation Collaboration
• NREL-Envision Collaboration
• Outlook
Verification & Validation of FAST Against Siemens Data

- **FAST w/ BeamDyn** was verified against **BHawC** & validated against data through collaboration w/ Siemens:
 - 3-way code-to-code & code-to-data comparison

- Siemens 2.3-MW 108-m diameter turbine (SWT-2.3-108) @ NREL:
 - Upwind 3-bladed rotor
 - Aeroelastically tailored blades w/ bend-twist coupling
 - Variable speed & collective pitch
Instrumentation & Measurements

- **Instrumentation:**
 - Strain-gages @ blade root, main shaft, tower top, & tower bottom
 - FiberBragg strain sensors along blade
 - Blade surface pressure taps, pitot tubes (not used)
 - Rotor speed & electrical power
 - Inflow data recorded from 135-m met. tower located ~2.5D upstream
 - Data recorded @ 100 Hz & packaged into 10-min time series

- **Measurements:**
 - Large amount of data collected from 2013-2015
 - Total of 1141 10-min datasets under normal operation utilized, covering a range of inflow wind speeds & turbulence intensities (guided by IEC 61400-13)
Verification & Validation Results
Outline

- The OpenFAST Multiphysics Engineering Tool
- Timeline of Recent Aeroelastic Enhancements
- Overview of BeamDyn & AeroDyn
- Siemens Verification & Validation Collaboration
- NREL-Envision Collaboration
- Outlook
NREL-Envision Collaboration Overview

NREL & Envision Energy collaborate to advance **OpenFAST**

BeamDyn
- Fixed several bugs
- Eliminated need to compile in double precision
- Introduce preconditioning in **BeamDyn** to reduce start-up transients & allow for larger time steps
- Extensive cleanup of source code

\[\approx 15 \times \text{speed up of OpenFAST w/ BeamDyn simulations} \]

AeroDyn
- Fixed several bugs
- Drastically improved robustness of BEMT algorithm
- Completed DBEMT to replace generalized dynamic wake (GDW) model of older versions of **AeroDyn**
Full-System Linearization Including BeamDyn

- New functionality enables linearization of full-system OpenFAST models w/ BeamDyn for land-based wind turbines for parked or operating rotors

- Key development steps:
 - Linearization of BeamDyn module to derive Jacobians of state & output equations w.r.t. states & inputs
 - Linearization of module-to-module input-output coupling relationships (including generalization of linearization implementation)
 - Full-system matrix assembly
 - Rewrote MBC3 post-processor
 - Verification for sample cases:
 - Fixed-free & free-free beams
 - Campbell diagram of NREL 5-MW wind turbine
Full-System Linearization Including BeamDyn – Results

Fixed-fixed

ElastoDyn Free-free BeamDyn

Mode Analytical Lineariz’n BD Summary File

<table>
<thead>
<tr>
<th>Fixed-Free Beam (Hz):</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5842</td>
<td>0.5776</td>
<td>0.5776</td>
</tr>
<tr>
<td>2</td>
<td>0.5842</td>
<td>0.5776</td>
<td>0.5776</td>
</tr>
<tr>
<td>3</td>
<td>3.6607</td>
<td>3.6060</td>
<td>3.6060</td>
</tr>
<tr>
<td>4</td>
<td>3.6607</td>
<td>3.6060</td>
<td>3.6060</td>
</tr>
<tr>
<td>5</td>
<td>10.2512</td>
<td>10.0173</td>
<td>10.0173</td>
</tr>
<tr>
<td>6</td>
<td>10.2512</td>
<td>10.0173</td>
<td>10.0173</td>
</tr>
</tbody>
</table>

Free-Free Beam (Hz):

<table>
<thead>
<tr>
<th>1</th>
<th>3.7171</th>
<th>3.4070</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3.7171</td>
<td>3.4070</td>
</tr>
<tr>
<td>3</td>
<td>10.2465</td>
<td>9.6849</td>
</tr>
<tr>
<td>4</td>
<td>10.2465</td>
<td>9.6849</td>
</tr>
<tr>
<td>5</td>
<td>20.0873</td>
<td>19.8438</td>
</tr>
<tr>
<td>6</td>
<td>20.0873</td>
<td>19.8438</td>
</tr>
</tbody>
</table>
Outlook

• Engineering models required to address design challenges so that wind turbines are:
 o Innovative
 o Optimized
 o Reliable
 o Cost-effective

• Improved models are needed for:
 o Upscaling to larger sizes
 o Novel architectures & controls
 o Coupling to offshore platforms
 o Design at the wind-plant level
 o System-wide optimization

\[\text{Thomsen (2013)}\]

\[\text{SWT-6.0-154 w/ Airbus A380}\]

\[\text{Horns Rev Wind Farm}\]
Carpe Ventum!

Jason Jonkman, Ph.D.
+1 (303) 384 – 7026
jason.jonkman@nrel.gov